University of Konstanz
Department of Computer and Information Science

Bachelor Thesis for the degree

Bachelor of Science (B. Sc.) in Information Engineering

A workbench for the K*
algorithm

by
Sebastian Haufe

(Matr.-Nr. 01,/852827)

15t Referee: Prof. Dr. Stefan Leue
2nd Referee: Prof. Dr. Marcel Waldvogel

Thursday 12" January, 2017

Abstract

Finding shortest paths is an often discussed task in the domain of graphs.
Many search algorithms for shortest paths have taken on this challenge.
In recent decades, several directed search algorithms for finding shortest
paths have been invented. One of these algorithms is the K* algorithm
which has been implemented by Husain Aljazzar.

The K* algorithm is part of the model checker tool DiPro which has
been created by Husain Aljazzar, Florian Leitner-Fischer and Dimitar
Simeonov. Hence, the K* algorithm only handles a few types of graphs
which are convenient for this tool. One of the advantages is that the K*
algorithm focuses on the performance to handle big graphs.

In this thesis the isolation of the K* algorithm is explained. The purpose
of this kind of realisation is to get the K* algorithm as a stand-alone
version usable for arbitrary graphs.

Contents

1.

Introduction
1.1. Contributions
1.2. Orientation
Preliminaries
2.1. Heuristics
2.2. The K* Algorithm
2.3. Typesof Graphs
Isolation of K* Algorithm
3.1. Isolated K* algorithm
3.2. Imitialization
3.3. Modification and Changes
3.3.1. Dynamic loading of Context and Heuristic
3.3.2. Properties of Execution.
3.3.3. Modification of the Context Class
3.3.4. Solution Output
3.4. Heuristic Interface
3.5. Context Interface
3.6. Database
3.7. Compilation and Execution
Case Studies
4.1. K* with a Distance Graph
4.2. Comparison with another K* Implementation
4.3. Results Discussion
Conclusion
5.1. Conclusion
5.2. Future Work
. Appendix

A.1. Compilation manual
A.2. Properties manualo
A3.DVD . . .

List of Figures

PN OO W=

e e e el e =)
O N OOt W= O

19.

20.
21.
22.
23.

Rough structure of the K* algorithm.
Packages of the isolated K* algorithm.
Initialization process of the K* algorithm.
Inheritance of the K* algorithms.
Class connection of the context.
Class connection of the heuristic.
Integration of the new context classes.
Structure of the heuristic interface.
Class structure of the context package.
Database structure of the K* algorithm in package db.
Database tables of the K* algorithm.
Average runtime in ms of the road map New York.
Average memory in kB of the road map New York.
Average runtime in ms of the road map New York.. . . .
Average memory in kB of the road map New York.
Average runtime in ms of 50 random runs New York City.

Average memory in kB of 50 random runs New York City.

Average runtime in ms of 50 random runs San Francisco
Bay Area.
Average memory in kB of 50 random runs San Francisco
Bay Area.
Average runtime in ms of 50 random runs Colorado. . . .
Average memory in kB of 50 random runs Colorado. . . .
Average runtime in ms of 50 random runs Florida.
Average memory in kB of 50 random runs San Florida.

10
12
13
14
17
19
22

25
27
28
29
29
31
31

32
32
33
33

34

1. Introduction

1. Introduction

Finding solution paths in a given graph is a purpose of search algorithms.
Further, search algorithms for shortest paths involve finding the optimal
solution path, between a source vertex and a target vertex, with minimal
cost. The most meaningful search algorithm for shortest paths is proba-
bly the Dijkstra algorithm [10].

In more detail, the approach of k-shortest-paths problem algorithms will
be considered in this thesis. The k-shortest-paths problem deals with
finding the k best solution paths in an ascending order on a directed
weighted graph.

Search algorithms are held in high regard in several application areas.
They are used to find optimal solutions in applications which can be
represented as graphs. In this thesis, an example for such an application
will be the representation of road maps.

Such an algorithm is the K* algorithm by Husain Aljazzar [1, 2]. One of
the most meaningful advantages of the K* algorithm is the fact that it
operates on-the-fly, which means that only the part of the graph which is
needed to find the k wanted solution paths is loaded into memory space.
The whole graph is not to be loaded completely. This makes a contribu-
tion to the K* algorithm being a very efficient algorithm to deal with big
graphs.

The K* algorithm is implemented as a part of the model checker tool
DiPro [5, 9] which has been created by Husain Aljazzar, Florian Leitner-
Fischer and Dimitar Simeonov. This fact makes the algorithm executable
only for a few types of graphs associated to this tool.

In this thesis, the isolation of the K* algorithm as a stand-alone version
will be described. This will guarantee a usage of the K* algorithm while
the tool DiPro is not needed. The result will be a version of the K*
algorithm which will be able to handle an arbitrarily given graph.
Subsequently, the given case studies will prove that this new version of
the K* algorithm is the same version as Husain Aljazzar implemented.
Further, it will be proven that it is not worse in terms of performance
than the original implementation.

1. Introduction

1.1. Contributions

The contributions listed below can be found in this thesis:

1. The implementation will be described to get an overview about the
K* algorithm structure. Further a little process description can be
found.

2. The isolated K* version with explanations of all its modifications
listed separately.

3. New implemented interfaces for a general use of the K* algorithm.
In addition to this feature, it is shown how the user can handle own
heuristics and graphs with the K* algorithm.

4. The K* algorithm implementation is designed for a
system-independent use. Hence it will be used by a command-
line interface. To get it completely executable, a construction to
compile the whole K* algorithm version is explained.

5. An evaluation by case studies shows that the efficiency did not
decrease by isolating the algorithm, compared to Husain Aljazzar’s
version. This comparison will also be a topic of the evaluation.
Further, there will be a comparison between this implementation
of the K* algorithm and a K* implementation of another study.

The main tasks of this thesis were focused on the isolation of the K* algo-
rithm, as a stand-alone version. For the abstraction an implementation
of interfaces was necessary to connect to the K* algorithm.

1.2. Orientation

This thesis is structured as follows: The preliminaries can be found in
section 2. They include a basic description of the K* algorithm and an
explanation of graph types and heuristics. The main part of this thesis,
which includes the isolation process and modification of the K* algorithm
for a stand-alone version, will be explained in section 3. Further the
interface implementation and a database connection can be found there.
An evaluation of the K* algorithm by case studies can be found in section
4 and a conclusion will be given in section 5.

2. Preliminaries

2. Preliminaries

In order to get a better understanding of this thesis a short description
about the preliminaries will be given in this section.

2.1. Heuristics

Judea Pearl described a heuristic as a criteria which decides between
several options to find the most promising way [8]. If there is the task
to find a way between two different points A and B, and both points are
not necessarily directly connected, it is obvious to aim for the shortest
possible way. Hence, if more than one possible way between these two
points exist the best way will be found by a comparison of all possible
ways.

This kind of decision is the same approach as a heuristic does. In case of
the K* algorithm the heuristic calculates the probability of every explored
vertex. The calculated value gives the information how good the way
from this current vertex to the target is.

How Judea Pearl described it in his paper [8], in case of the A* algorithm
[11] the heuristic function consists of two parts. The first part is the value
g, which is the cost of the way between the source vertex and the current
vertex. The second part is the value h, which is the estimation of the
needed cost from the current vertex to the target vertex. Both values
yield the estimation function: f = g + h.

The heuristic evaluation function provides an essential part of the search
result. The search can be guided by using this estimation to find the
target faster.

2.2. The K* Algorithm

The K* algorithm is a search algorithm of the k-shortest-paths problem
algorithms (ksp) [3]. The reason for developing the K* algorithm was that
Husain Aljazzar focused on the problems conventional ksp algorithms
have [1, 2]. With the K* algorithm, he implemented an algorithm which
maintains performance by searches of large graphs. The K* algorithm
offers two advantages compared to the other algorithms: First, K* is
an algorithm operating on-the-fly. Only the vertices which need to be
explored by search are stored in memory. Second, the K* algorithm uses
a heuristic evaluation function for a target-guided search.

3. Isolation of K* Algorithm

The K* algorithm depends on two search algorithms: The A* algorithm
[11], which explores the graph to find the shortest path and Dijkstra
algorithm [10], which searches the k solution paths on a created path
graph structure, like Eppstein described in his paper [3].

The path graph structure of the K* algorithm combines two binary min
heaps for every explored vertex. One for all incoming edges and another
heap as tree heap. Further information about the structures can be found
in the work of Husain Aljazzar [1, 2].

Basically, the K* algorithm is able to handle every type of graph. It
operates on the identifier of each node that guarantees an independent use
across different graph type. More information and a detailed description
about the K* algorithm can be found in the work of Husain Aljazzar
1, 2].

2.3. Types of Graphs

A graph is represented by a number of vertices and edges. Focussing,
that the K* algorithm operates on directed weighted graphs, edges are
marked with a numerical number. Every graph, depending on its kind,
has different properties on a vertex. So, the algorithm is constructed
to operate only with the given ID of a vertex. In that way it does not
matter with which properties a node comes with.

Hence, for all different types of graphs the K* algorithm is able to handle
them.

3. Isolation of K* Algorithm

The idea to get the K* algorithm isolated was to get the algorithm itself
as an independent executable component. If the algorithm has no heuris-
tic evaluation function as an input it should still be executable. In this
case the K* algorithm executes like Dijkstra’s algorithm search [1, 10].
Additionally the algorithm should not crash if there is no given graph.
Hence, the K* algorithm is boxed into a shell of interfaces for the heuris-
tic function and the graph files. A roughly structured overview of this
implementation is depicted in Figure 1.

3. Isolation of K* Algorithm

K*

<<interfaces=
Heuristic

=<interface=> *

Graph ﬁ
Heuristic java

nodes B\
edges B}

Figure 1: Rough structure of the K* algorithm.

Figure 1 shows that the K* algorithm is capsuled as an independent com-
ponent. This guarantees that the algorithm is in a stable form as itself.
For an execution of the K* algorithm it communicates via interfaces. Like
it is shown in Figure 1, the K* algorithm needs a graph and a heuristic
evaluation function for operation.

The K* algorithm handles the graph by two separate given attributes: the
vertices and the edges. How the vertices and edges are given is irrelevant.

The only requirement for the allocation is as follows:

- As mentioned in the preliminaries the K* algorithm operates on the
given identifier of the vertices. Hence, it is the only requirement for
them. All additional properties of the vertices are only information
for e.g. solution output.

3. Isolation of K* Algorithm

- In case of directed weighted graphs, for the edges it is necessary
to know the source vertex, the target vertex and the weight of the
edge.

Theses properties are given by the user.

To get the description mentioned before as a result, several steps were
required:

1. The tool DiPro [5, 9] has been looked through to get only these class
files which are necessary for the K* algorithm. This guarantees a
minimum of needed class files.

2. For the implementation of the heuristic and graph interface the ini-
tialization process of the K* algorithm had to be adapted. Further,
the class files of DiPro only handle a few types of graph. Hence,
these files had to be modified for a general usage.

3. Several existing class files of the K* algorithm itself had to be
changed to handle the given input parameters by the interfaces.

4. To make the K* algorithm usable on several operating systems,
this version has been designed for a execution on the command-
line interface.

5. The complete solution output has been changed.

For the isolation process and modification of the files which are described
in this thesis, the implementation is supported by [4, 13]. In case of
the isolation and with the aim to get the same performance to the K*
algorithm as Husain Aljazzar [1], the Java source files are extracted out
of DiPro [5, 9]. These files are published under the public licences of
GNU [15].

3.1. Isolated K* algorithm

The model checker tool DiPro [5, 9] was implemented for evaluating al-
gorithmic approaches. Therefore, it collects a selection of a few search
algorithms. One of these algorithms is the K* algorithm [1, 2]. The new
version of the K* algorithm consists only of a few classes remaining from
DiPro. In this section this implemented structure of the K* algorithm
will be described in more detail. Because the whole K* algorithm is a

3. Isolation of K* Algorithm

big construction, the class structure representation would be a cluttered
overview. Hence, the description of it will be fragmented into packages
and classes.

The implemented class structure of DiPro [5, 9] is maintained in the new
K* algorithm. Subsequently, the existing packages of the K* algorithm
will be explained. In order to avoid clutter, only the packages itself and
the internal inheritances of the classes in the packages are represented.

It consists of the following packages:

alg: This package includes the algorithm structure of the K* al-
gorithm, which will be explained in section 3.2. Additionally it
contains the structures needed for the algorithms, like the path
graph structure and the heaps.

context: By default this package is empty and should be filled
with the context files. It contains all files for the context interface,
explained in section 3.5.

db: This package is a completely new package in this version of the
K* algorithm. In order to handle the K* algorithm with a database
connection, it contains a class for the use of a graph or a heuristic.
The database connection will be explained in section 3.6.

graph: This package contains the classes which represent the graph
for the algorithm. It contains the default classes for the vertices
and edges.

h: The heuristic file should be inserted into this package. It con-
tains only the heuristic class which represents the heuristic inter-
face. It will be explained in section 3.4.

run: This package includes the complete initialization process for
the K* algorithm.

util: In this package all needed utilities of the K* algorithm are
implemented and thus stored in here. E.g. the evaluation function,
the solution collector and the algorithm reporter.

3. Isolation of K* Algorithm

In the course of the isolation of the K* algorithm [1, 2] several classes
were modified and a few new classes were implemented. These classes
will be described in section 3.3.

After the isolation of the K* algorithm out of the tool DiPro [5, 9], it
needs to get executable. In order to handle this problem a compilation
class has been created, which will be explained in section 3.7.

Figure 2 shows the complete K* algorithm class diagram. The black
framed classes are unchanged class files of the K* algorithm [1, 2]. The
red framed classes are changed class files of the K* algorithm and the blue
framed classes are newly created class files for the isolated K* algorithm.

3. Isolation of K* Algorithm

ydeigpazaang
=< BIEHAI >

E«Eﬁ_:u_ﬁ:_m.._mt&._ou_ _E_EE:"__._o:m:_m:H__wEmu__n__i:_ _ !!%E.E:H_mm_

J

abpgpajcangpaybiai _

uomsodosg A._M
< BIEUEI —:o_qih:u-._a_umigm_m\ﬁmu-n_::!_ —E_«u::n_p-n_ym..__mbuu__ ydeig L,
_._w_u._n-umw_mmun..—:c_i.__nw_ EFCLLITCIT P abp3apajaangyneag
- [|
[ommossomesy] =

.__.__w _ HnqupY _ _ﬂ..EEEmmm_ _%aizsth_ -

b| #bp3
0233 [eDUOITOE pr—— H E LCTET) =<BORPIIULE>
Joyeiedwon)Raueo

g
|

=2
ujdeayuaysddy
d
hnmmTE.Emnnm FPONLOEEH 1BPECTASEQEIE] _ fuysiBay _

_ apopujdeay _ TmEBMEnEm_ Tﬂﬂmnuﬁis.__

;

:EEwEEEEm_ _ E.mx___u _ TnEuﬁmEnﬁz_

JEEgUo Ty
EECLL-TTE TITEEN

i

s

d

E

g

-
H I

Figure 2: Packages of the isolated K* algorithm.

9

3. Isolation of K* Algorithm

3.2. Initialization

The first important part of the whole K* algorithm is the initialization
process. It handles the input parameters of the users’ property file, offers
a few default values for the properties at the beginning and contains the
interfaces for loading of the users’ heuristics and graphs. The sequence
diagram in Figure 3 shows the initialization process for the K* algorithm.
To keep the overview of the initialization process readable, this sequence
diagram does not show the submethods of each instance.

|
|

|
|
load Configuration D"‘L

load Context

>

init Context >
load Algorithm
= >
init Algorithm
execute Algorithm

Figure 3: Initialization process of the K* algorithm.

The initialization process is basically maintained from DiPro [5, 9] with
modifications for the new K* version, which will be described in the fol-
lowing. The initialization begins in the class Main, after the K* algorithm
has been started via command-line interface. After setting the working

10

3. Isolation of K* Algorithm

directory and initializing the registry, the first significant step is done by
loading the configuration for the K* algorithm. Therefore, the default
settings are loaded from the Config class. Then, the properties of the
property file are parsed into the configuration. The next step is the first
of two processes, where a user file is handled by loading the context file
in the Init class. This is realized by reading the class name, which was
parsed from the users’ property file, and creating a new instance of this
class. Next, the context file will be initialized. This is controlled by the
context interface class AbstractContext. To initialize the context class
the method init() of the AbstractContext class is called. This method
calls the methods readParameters(), which parses the graph specific pa-
rameters and loadModel(), which loads the graph. Both methods have to
be implemented by the user and will be explained in the section for the
context interface, in section 3.5 of this thesis. After these steps the basic
initialization is done and the algorithm can be loaded.

The K* algorithm will be initialized in the AbstractContext class by the
method loadAlgorithm(). While this method loads several algorithms in
DiPro [5, 9], it became unnecessary for the isolated K* algorithm. As
mentioned in the description of the K* algorithm in the preliminaries,
the K* algorithm is a combination of the A* algorithm [11] and Dijkstra
algorithm [10]. Judea Pearl has described, that the A* algorithm is a
modification of the BF* search algorithm, which in turn is a modifica-
tion of the BF search [8]. The difference between the BF* and BF search
algorithms is summarized by Husain Aljazzar in [1]. The BF* algorithm
terminates if the target vertex should be expanded. That guarantees
that the shortest path is found.

With this knowledge the structure of the K* algorithm has been imple-
mented by Husain Aljazzar [1].

Figure 4 shows the inheritance structure of the implemented algorithms of
the K* algorithm. A simplified version is as follows: The K* algorithm is a
k-shortest-paths problem algorithm. Hence, the KStar class extends from
KSPAlgorithm. In turn KSPAlgorithm extends from Dijkstra class,
which is used for the path graph structure of the K* algorithm. As
mentioned before, the A* algorithm [11] is a modified version of the BF
search. Hence, the BFStarForKSearch class extends from BFStar which
in turn extends from BF just as the Dijkstra class does. That is because
the special case of no given heuristic will be equivalent to Dijkstra’s
algorithm [1, 10].

11

3. Isolation of K* Algorithm

BF
BF Star
Dijkstra
JA
KSPAlgorithm BF StarForK Search
JA
K Star

Figure 4: Inheritance of the K* algorithms.

By initializing the K* algorithm, two instances are created. An instance
of the KStar class for Dijkstra search [10] on the path graph structure
and an instance of the BFStarForKSearch class for the A* algorithm [11]
to explore the graph.

In the last step, before the K* algorithm is running the heuristic function
will be loaded from a given class file. This is the second process where a
user file is loaded. Subsequently, the solution collector will be initialized
and the graph properties will be set to the algorithm [1, 10].

3.3. Moadification and Changes

As mentioned in the beginning of this thesis, a few modifications of the
original K* algorithm class files had to be made, which are listed in the
following sections.

12

3. Isolation of K* Algorithm

3.3.1. Dynamic loading of Context and Heuristic

The most significant connecting component composes the interfaces be-
tween the K* algorithm [1, 2] and the class files for the heuristic and
graph module. They form the prerequisite for the execution of arbitrary
graphs by the K* algorithm. Hence, in this section it will be explained
how the initialization process of the K* algorithm had to be changed, to
integrate these interfaces to the complete algorithm structure.

The context is the first of the two Java classes which is loaded by the
steps of the initialization, as previously explained in section 3.2. Before
modifying the implementation, the context was originally loaded in the
method public Context loadContext(Config config). The explicit context
class was selected by the given graph type parameter of the configuration
object.

Now, this method is changed to load the context by the given file name of
the property file. The context file name will be loaded from the parame-
ter. A new instance will be created and returned as a type of the abstract
superclass AbstractContext, which represents the context interface.
An illustration of the connection between the initialization and the con-
text file is given in Figure 5.

Main AbstractContext

\ AN

Init

+ lpadContext{config: Config): Context

Config .

UserContext

Figure 5: Class connection of the context.

13

3. Isolation of K* Algorithm

The second loaded Java class is the heuristic by the initialization of the
algorithm. The method public void init() of the class BF is loading the
heuristic by calling the method public Heuristic loadHeuristic(BF alg).
The heuristic is loaded from a local given heuristic class file or from a
given url of an existing database. The idea to load the local heuristic
class by this way was implemented in DiPro [5, 9] and has been extended
by the database selection. As the context file is loaded, the heuristic file
will be loaded by a given file name from the property file. If no heuristic
name or database url is given, the K* algorithm will execute without any
heuristic. Figure 6 shows how the heuristic is called.

BF

+ it

| Heuristic

| ﬁf
AbstractContext
________ {4 UserHeuristic

+ l[oadHeuristicfalg, BF)Y:Heuristic

Figure 6: Class connection of the heuristic.

3.3.2. Properties of Execution

For execution of the K* algorithm several options exist to manipulate the
search. This is useful to ensure the graph’s compliance with the desired
properties. The following properties have been implemented in DiPro
[5, 9] and can be set by the user in a given property file:

greedy: This option brings the evaluation function to calculate
the value f only by the heuristic function. The value g will be
suppressed.

prune bound: All vertices, for which hold that their f value is
higher than the prune bound will be pruned by the algorithm. In

14

3. Isolation of K* Algorithm

that case the search will be optimized by saving memory space
while pruning parts of the graph, which not promise optimal paths
for solutions.

maxiter: The algorithm stops after the number of iterations is
reached whether or not the wanted solution paths have been found.

maxtime: The algorithm stops after the limit of the runtime is
reached whether or not the wanted solution paths have been found.

complete: If this option is set the whole graph will be explored.

These options are part of all options which can be set in the configuration
of the K* algorithm in the initialization process. All options, including
the new options, can be found in the appendix A.2 of this thesis and in
the attached user manual.

3.3.3. Moadification of the Context Class

The AbstractContext class forces the user to implement several meth-
ods for the context. Therefore, a few new classes are created and several
abstract methods are newly declared.

New classes

The ContextComparator class is used to create a new instance of a com-
parator. Which type of result the comparator returns is implemented by
the user in the context class. It is one of the methods the user has to
implement and will be explained in section 3.5 for the context interface.
The comparator is used for all comparisons in the K* algorithm. It is
used in three ways. Firstly, it is used for the prune bound value as men-
tioned before. Secondly, it is used for the search queues and their f values
to sort the selection in order of the best next vertex. Lastly, it is used
for the delta values of the min heaps in the path graph structure. The
delta value describes the detour by a sidetrack edge. A sidetrack edge is
an edge which has been explored by the A* algorithm [11]. It is stored in
the path graph structure and is not a part of the optimal solution path.
More information about the detour and the sidetrack edge can be found
in the paper of Husain Aljazzar [1, 2].

How the comparator will be implemented depends on the kind of the
search.

15

3. Isolation of K* Algorithm

A short example will illustrate the usage: For a distance graph the short-
est way should be found. Therefore, the comparator supplies the lower
value. Hence, a Double comparator can be selected. In case of the com-
parator needs to supply the higher value, the comparator can be negated.
While the Comparator class in Java only returns lower, equal or higher
as a result variable, a normal or negated comparison will make sense.
For that, both versions have been implemented for the K* algorithm in
DiPro [5, 9]. In addition to the new ContextComparator class, these
comparators are implemented as subclasses in the ContextComparator
and can be selected by the user in the context file. This will be explained
in 3.5

The ContextEvaluationFunction class is used to create a new instance
of the evaluation function f. There are two kinds of the evaluation func-
tion implemented in DiPro [5, 9]. One is an additive evaluation function,
which calculates the value f by adding the values g and h, and the other
one is a multiplicative evaluation function, which calculates the value f
by multiplying the values g and h.

Usually, the additive evaluation function is used, because it is the com-
mon way for calculating the f value. With regard to the counterexample
state space graphs, a multiplicative version for the evaluation function
has been implemented to the model checker tool DiPro [5, 9].

For the isolated K* algorithm, both evaluation functions will be usable.
The reason for this is as follows: By tracking a path on a graph the
distance of the way increases. That is a positive progression. Therefore,
only a summation or multiplication would be usual.

Figure 7 shows the implemented connectivity of these new classes to the
context. The new classes ContextComparator and

ContextEvaluationFunction are connected with the context interface
class AbstractContext, which calls the methods loadComparator() and

load EvaluationFunction() to get these properties from the users context
file.

16

3. Isolation of K* Algorithm

ContextComparator

+nitd:Caomparator=Double=

AbstractContext

DoubleComparator

- + l[oadComparatord:int
+ comparedol: Double, 02 Double)int + loadEvaluationFunction(int

1 # getComparatard:int
oetEvaluationFunctiond:int

i)

B

|
UserContext

InvertedComparator

+ camparefol: Double, 02 Double):int

ContextEvaluationFunction

;] # getComparatorfint
+ select O kEvaluationFunction # getEvaluationFunctiony:int

Figure 7: Integration of the new context classes.

New methods

The several solutionCollector files have changed to one common
KSolutionCollector class, as default solution collector. Therefore, it
is no longer necessary to load the solution collector in the context class.
The solution collector will be created directly with a new instance by
initializing the algorithm in the BF class.

The label of the solution output file is set to a static description. There-
fore, the name of the given context file is used. In this case the method
getSolutionFileName() is set to the AbstractContext class.

3.3.4. Solution Output

To get a clearly arranged summary of the K* algorithm the solution out-
put has been adjusted. There are four several solution files possible now.
These output files will be discussed in the following:

17

3. Isolation of K* Algorithm

Search report

The search report is a logging file which was created for the tool DiPro
[5, 9]. Tt provides five different logging levels, ranging from basic logging
for some information to a detailed logging for debugging purposes. The
logging can also be disabled.

Summary

The summary file was also created for the tool DiPro [5, 9]. For that,
an own class file, the AlgReporter, was implemented. This class file
gets a status report after each search iteration. In this version of the K*
algorithm, the summary output file is adapted to be suitable for general
use.

Each line shows:

I = number of the current needed search iterations

S = number of vertices which are currently explored

E = number of edges which are currently explored

V = value g of the current best trace

- N = number of current found solutions

R = number of reopened vertices
- RT = complete runtime

- Sea_M = used search memory

Sol_ M = used solution memory

- Mem = complete used memory

Solution paths and path graph traces

With this option it, is possible to enable the output of all solution paths
and the corresponding path graph traces, that are found by the K* al-
gorithm. Therefore the solution collector class file has been changed
to handle two output files at once. If the option to log the solution
paths and path graph traces is set, two separate files will be created, the
”_solution_paths” and the ”_pathgraphtraces” file. In front of the first

18

3. Isolation of K* Algorithm

underscore, a K* signature and the name of the used context file will
be placed. The whole file name looks like this: "kStar_search_<context
name>_solution_paths.txt”. It can be selected between a normal text file
"txt” or an XML file ".xml”, as output file type.

A visual output of the solution is not implemented. Only the creation of
output files is possible. Thus, a text file editor is needed to inspect these
files. For the paths in the "solution paths” file, the existing method con-
structTrace() is used now. This method was created for the tool DiPro
[5, 9] and calculates all solution paths by considering the sidetracks.

3.4. Heuristic Interface

The K* implementation contains an abstract class Heuristic with the
abstract method public abstract double evaluate(Vertexr v), which has
been implemented by Husain Aljazzar [1] in DiPro. It has to be overwrit-
ten by the User in a given Java file, which extends from the Heuristic
Java file. The Heuristic class is called in the search algorithms by re-
laxing the vertices. Therefore, the values h and f are calculated.

In case of the road map example in the case studies of this thesis, the
used heuristic calculates the airline distance between two given vertices,
which is described by Husain Aljazzar in his paper [1]. In the construc-
tor of the UserHeuristic class the target vertex will be set. Every time
calling the evaluate() method, the distance between the current given
vertex and the target vertex will be calculated and returned.

Heuristic

+ evaluate(v: Vertex):.double

i

UserHeuristic

+ evaluate(v: Vertex). double

Figure 8: Structure of the heuristic interface.

19

3. Isolation of K* Algorithm

3.5. Context Interface

To make the K* algorithm generally usable, it should be able to handle
different types of graphs. Considering, keeping the usage of the K* algo-
rithm for the user as simple as possible was one of the biggest challenges
of this thesis. An acceptable agreement between a simple usage and an
implementation, that is not too complex, is represented by the created
context interface.

The context interface can be compared with a wizard who collects all
needed information about the graph. It supplies all properties which dif-
fer for every graph. These properties are the graph itself, the property
which indicates that the target is found and the specific vertex type.

The idea how this context interface is realized is based on the properties,
which are needed by the K* algorithm to execute successfully. As men-
tioned in previous sections, the required properties for a search operation
on the graph are known. Hence, for every graph a special type of vertex
has to be implemented.

Moreover, every target solution of a given graph depends on his own set
of properties, which have to be checked if they come true. In order to
address this, a special property has to be implemented.

At last, the graph should be known. Thus, a class file has to represent
it. The several Java class files are explained in detail as follows:

Context file
The context class file extends the abstract class AbstractContext and
is constrained to implement the given abstract methods:

- protected void readParameters(): This method reads the given
parameters of the properties file which are given specifically for the
graph.

- protected void loadModel(): This method loads graph, prop-
erty and start vertex.

- protected DirectedGraph loadGraph(): This method loads
the graph implemented by a class extending DirectedGraph class.

- protected Proposition loadProperty(): This method loads the
properties implemented by a class extending Proposition class.

20

3. Isolation of K* Algorithm

protected <T> T getlnitialState(): This method loads the
start vertex. The type of the vertex should be given by a class
which extends of DefaultVertex class, which in turn matches the
graph node type.

protected int getComparator(): This method returns a flag
for the comparator function. These flags are implemented in the
ContextComparator class. The flag DOUBLE_COMP will be re-
turned instead of a Double comparator while the flag INV_COMP
will be returned instead of a inverted Double comparator.

protected int getEvaluationFunction(): This method returns
a flag for the evaluation function class. These flags are implemented
in the ContextEvaluationFunction class and can be enhanced
if new types are needed. The flag ADDITIVE will be returned
instead of the additive evaluation function f = g + h while the flag
MULTIPLICATIVE will be returned instead of the multiplicative
evaluation function f = g * h.

Graph file

The graph class file implements the DirectedGraph interface and has to
implement its methods. In this class, the user can implement the graph,
which is connected to a database or loaded from a local file, or some-
thing similar. Further, preprocessing steps can be made. The important
methods to implement are:

public Iterator<? extends DirectedEdge> outgoingEdges
(Vertex v): This method returns all outgoing edges from the given
vertex for the A* algorithm as an iterator. At this point the user
can implemented preprocessing steps. For example, only edges are
returned which keep a condition desired by the user.

public <T extends DefaultVertex> T getNode(int id): This
method returns the desired vertex by the given id.

public float weight(Edge e): This method returns the weight
of the current edge.

public void clear(): This method clears all used memory space
after the algorithm has terminated.

21

3. Isolation of K* Algorithm

Vertex file

As already mentioned in the preliminaries for the graph types, own prop-
erties exists for every graph. Hence, the vertex class file has to be imple-
mented. It contains all necessary properties for the vertices of the graph.
It extends the DefaultVertex class. Every vertex needs an unique id for
the K* algorithm.

Property file

The property class file implements the Proposition interface. It holds
and checks the target condition by the method public int check(Vertex
vertex), which has to be implemented by the user. The interface Proposi-
tion delivers three flags for checking. Firstly, the flag never if the current
vertex never leads to a target. Secondly, the flag false if the current ver-
tex is not a target vertex. Lastly, the flag true if the current vertex is a
target vertex.

These four class files are the necessary context files, implemented by the
user. If the user has to implement more files representing the graph,
he/she is free to extend the context with more files. In Figure 9 a com-
plete overview of the context structure is given and shows how the user
files need to extend from the classes.

st 2 C—]

<<interface>> <<interface>>
I WeightedDirectedEdge I DirectedGraph | AbstractContext I Proposition

A A A

UserG UserProperty

[UserVertex

Figure 9: Class structure of the context package.

22

3. Isolation of K* Algorithm

In the following section the use of the context folder will be explained
by going through a simple example. The scenario is the road map graph
used in the case studies of this thesis. It consists of four classes: Road-
Context, RoadGraph, RoadNode and TargetPredicate.

The context class file RoadContext uses the readParameters() method
to read the source vertex and target vertex. The loadGraph() and load-
Property() methods return a new instance of the graph class and property
class, respectively.

The graph class file RoadGraph loads the graph from a given database.
Hence, the connection is built up in the constructor of the class. For the
execution of the K* algorithm the methods outgoingEdges(), getNode(),
weight() and clear() are needed. The method outgoingEdges() selects all
needed edges by the identification number of the source node and creates
the edges as an instance of the class WeightedDirectedEdge. The initial
vertex and all needed vertices are selected in the getNode() method. The
method weight() returns the weight of the given edge and clear() closes
the database connection, after all solution paths are found.

The class file RoadNode represents the type of the used vertex for this
graph. In case of the road map the earth coordinates are needed. Hence,
the created vertices have an identifier, the longitude and the latitude, as
properties.

The property class TargetPredicate handles the condition of the tar-
get vertex. It checks, if the found identifier by the A* algorithm [11] is
the desired target vertex. The structure of this road map example looks
similar to Figure 9.

3.6. Database

Considering, using graphs or heuristics stored in databases the pack-
age "db” has been newly implemented. It consists of a database class for
graphs, a database class for heuristics and a class with a database loader.
The whole package and its implemented classes are shown in Figure 10.
The implementation of this connection is based on the implementation
description of [6]. To get a connection between the Java implementa-
tion and a database the Java Database Connectivity API (JDBC) [12] is
needed. In this thesis, the given Java files in the database package and
the given table structure in Figure 11 are optimized for the use of the
case studies. This files can be changed by a user to run other types of
graphs.

23

3. Isolation of K* Algorithm

A usage of the class DatabaseLoader from the command prompt is not
implemented.

AbstractDatabase

AN

GraphDatabase HeuristicDatabase

Databas el oader

Figure 10: Database structure of the K* algorithm in package db.

The database package can be used for uploading graphs and heuristics to
a database, defined by the user. Further, it enables to read graphs and
heuristics from a database for the run of the K* algorithm. That makes
it possible to use graphs and heuristics from remote locations. Figure 11
shows the used structure for the distances graphs of the case studies in
this thesis.

A little example will demonstrate next, how the use of the database pack-
age works.

First of all, it is necessary to have a correct Java database connectivity
driver for the database, to connect from the Java source code. For up-
loading a graph or a heuristic, the DatabaseLoader can be used. The
connection parameters of the database just need to be inserted in the
Java file and the main method can be executed.

To use a heuristic from a database the specific parameters have to be
written to the properties file. In that case, not only the heuristic file
name is needed. The whole command should include the token for the
heuristic -h, the flag for loading from a database -db and then the con-
nection parameters heuristic name, heuristic url, heuristic driver,
database user role and password (if necessary) in exactly this order.
Afterwards, heuristic file will be loaded from the database by the load
method of the context interface.

24

3. Isolation of K* Algorithm

Nodes

Edges

FILES

Figure 11: Database tables of the K* algorithm.

3.7. Compilation and Execution

The stand-alone version of the K* algorithm comes without any graphical
user interface. It is build as a portable version. Hence, it is used by the
command-line interface. The K* algorithm includes a Java class file,
which has been newly implemented, for compiling the whole algorithm
for execution. It is implemented and tested for the use on a Windows
operating system or a Linux distribution. To use the K* algorithm the
Java programming language compiler [14] is needed. If a usage with a
database connection is wanted a Java database connectivity driver [12]
is needed.

First, the whole K* algorithm has to be compiled. For that, the compile
class file can be used. It will compile the whole source folder for an
execution, afterwards. Subsequently, the K* algorithm can be started by
calling the Main class in the run package with a property file as input
parameter.

A complete step-by-step description can be found in the appendix A.1 of
this thesis and in the attached user manual.

25

4. Case Studies

4. Case Studies

To show the efficiency of the newly isolated and modified version of the
K* algorithm a few experiments will be conducted in this section.

The case studies are structured as follows: As a first experiment it will
be proven that this version of the K* algorithm is not worse in terms of
performance than Husain Aljazzar’s implementation of the K* algorithm
[1, 2]. As a second experiment the K* algorithm will be compared with
the results of another implementation of the K* algorithm by the authors
of the paper [7].

For the experiments the used graphs were stored in a relational database,
like Husain Aljazzar did and the graphs represent road maps of USA,
which are available on [16]. The used computer for the case studies is
equipped with an Intel dual core 2.5 GHZ and 16 GB RAM. Notice,
that this is not exactly the same equipment Husain Aljazzar used for his
experiments. Thus, it should be considered, that the results have to be
compared using approximation.

4.1. K* with a Distance Graph

For this experiment, the cases used by Husain Aljazzar were taken in or-
der to be comparable [1, 2]. The K* algorithm runs four times with four
different target vertices. Theses vertices lie in different directions. The
number of solution paths is set to 1000 traces. For a heuristic the airline
distance is used and the A* algorithm only grows 20% in each round of
exploration. As mentioned before, the solution output has changed and
will not be considered in the measurements. The results of the used mem-
ory space will only consider, like Husain Aljazzar did, the used search
memory.

New York City

In the first round of the experiment the road map of New York City is
selected. This map can be found on the homepage of the 9th DIMACS
Implementation Challenge [16] and contains 264346 vertices and 733846
edges. The measurement considers the runtime in milliseconds and the
maximum of needed memory space in kilobyte. The results are shown in

Table 1 as well as Figure 12 and 13.

26

4. Case Studies

average runtime New York

k 1 200 400 600 800 1000
ms | 162782,5 | 176929,75 | 177052,25 | 177105,5 | 177157,25 | 177200
kB | 4600326 | 5010109 5027253 | 5043962 | 5060352 | 5076430

Table 1: Average runtime in ms of the road map New York.

Table 1 shows the result for the New York City road map where k is the
number of solution paths, ms is the runtime in milliseconds and kB is
the memory space in kilobyte. The continuous line shows the result of
this experiment and the dotted line shows the result of Husain Aljazzars’
experiments [1] for comparison. In case of equal memory usage only the
continuous line is visible in Figure 13.

200000
180000

180000 "

170000 /

ms

160000

150000

140000
0

New York City

average runtime

200

400
k

600

500

1000

Figure 12: Average runtime in ms of the road map New York.

27

4. Case Studies

Mew York City
average memary

6000000

5000000 ——
4000000

3000000

kB

2000000
1000000

0
0 200 400 600 a00 1000

k

Figure 13: Average memory in kB of the road map New York.

Eastern USA

In the second round of the experiment the road map of the eastern
USA, also from [16], is selected. This map contains 3598623 vertices
and 8778114 edges. The results are shown in Table 2 as well as Figure
14 and 15. As well as in Figure 12, Figure 14 shows the result of this
experiment by the continuous line and the result of Husain Aljazzars’
experiments [1] are shown by the dotted line for comparison. In case of
equal memory usage only the continuous line is visible in Figure 15.

’ average runtime East of USA

k 1 200 400 600 800 1000

ms | 722024,5 | 873806,75 | 873903,75 | 873968 | 874010,5 | 874053,25

kB | 21038836 | 25316080 | 25332606 | 25348602 | 25364797 | 25381042

Table 2: Average runtime in ms of the road map East USA.

Table 2 shows the result for the Eastern USA road map where k is the
number of solution paths, ms is the runtime in milliseconds and kB is the
memory space in kilobyte. The increasing line in the first section of the
diagrams is due to the fact that the A* algorithm is resuming in some
runs of the K* algorithm.

28

[4=]

Figure 14: Average runtime in ms of the road map New York.

30000000
25000000
20000000
15000000
10000000
5000000
0

Figure 15: Average memory in kB of the road map New York.

0

4. Case Studies

Eastern USA

average runtime

200

400

Eastern USA

average memory

600

800

1000

200

400

29

600

800

1000

4. Case Studies

4.2. Comparison with another K* Implementation

The second experiment delivers a comparison of this version of the K*
algorithm and the implementation of the K* algorithm provided by the
authors of [7]. The authors of [7] implemented a new k-shortest-paths
algorithm and compared it to the K* algorithm. This experiment should
prove if this version of the K* algorithm may be better in terms of per-
formance.

For the experiment, the cases, the authors in [7] used, were taken. They
took four road maps of the 9th DIMACS Implementation Challenge [16].
New York City, San Francisco Bay Area, Colorado and Florida. They
generated fifty randomly selected s-t paths for each graph, where s is the
source vertex and t the target vertex of a solution path. For each run the
sixty optimal solution paths should be found and the airline distance, as
heuristic evaluation function, will be used just as Husain Aljazzar did [1].

Because their newly invented algorithm operates not on-the-fly, this op-
tion was disabled for the K* algorithm in their experiments. To obtain
a correct comparison of both K* algorithm this option will be disabled,
too. Hence the complete graph will be loaded into the K* algorithm.
The following Figures 16-23 show the runtime and memory results of the
four road maps used in the experiment of this thesis. The results of the
authors in [7] can be found in their paper.

30

4. Case Studies

Mew York City
50 s+

18000
16000
14000 ,,#~=r~"’ﬂ"ﬁdfrﬂﬂ_
12000
10000
8000
6000

4000
2000

ms

Figure 16: Average runtime in ms of 50 random runs New York City.

Mew York City
50 s+

5000000

4000000
3000000
iy
= 2000000
1000000

0
0 20 40 B0

Figure 17: Average memory in kB of 50 random runs New York City.

31

4. Case Studies

San Francisco Bay Area
H0 54
25000

L ———

15000

ms

10000
5000

0
0 20 40 &0

k

Figure 18: Average runtime in ms of 50 random runs San Francisco Bay
Area.

San Francisco Bay Area
50 =4

6000000

5000000
4000000
3000000

=]

2000000
1000000

0
0 20 40 &0

Figure 19: Average memory in kB of 50 random runs San Francisco Bay
Area.

32

ms

kB

4. Case Studies

Colorado
S0 s+

30000

20000
15000

10000
5000

Figure 20: Average runtime in ms of 50 random runs Colorado.

Colorado
50 s+

9000000
8000000

7000000

6000000
5000000
4000000
3000000
2000000
1000000

0

0 20 40

Figure 21: Average memory in kB of 50 random runs Colorado.

33

ms

m
=

4. Case Studies

Florida
S0s4

70000
60000
50000 ,,ﬂﬂfrﬂ”ﬁﬂrpﬂfrﬁgJF
40000
30000
20000
10000

Figure 22: Average runtime in ms of 50 random runs Florida.

Florida
505+
25000000

20000000

15000000
10000000
5000000

0
0 20 40 60

Figure 23: Average memory in kB of 50 random runs San Florida.

34

4. Case Studies

4.3. Results Discussion

Taking a look at the results in the first experiment, it is obvious that the
used memory space compared to the results of Husain Aljazzar’s experi-
ments [1] is the same size. This result was expected because no changes
were made at the search classes of the K* algorithm. In case of the solu-
tion output the maximum used memory space of the whole K* algorithm
is not known from the results of Husain Aljazzar’s experiments [1]. A
look at the runtime results shows that the isolated K* algorithm is faster.
The reason for this result depends on the different database connections.
By comparing the summary reports, it appears that the new runtimes
are slower in the beginning of the run. More time is needed to get the
sql results from the database. But the more of the graph is explored, the
faster the search will be.

For the second experiment the very same comparison is not possible. In
case of the random built s-t paths of the case studies in [7] it is not
possible to get the same s-t paths, because they are not known. Hence,
only an approximation to the experiments is possible. Not the same run-
times and therefore not the same memory usage were reached for the
experiment in this thesis. It is not known how long the s-t paths in the
experiments in [7] were. In addition, the CPU of the computer used
for the experiments in this thesis performs not as fast as the CPU of
the authors in [7] does. Hence, not the runtimes and memory usages are
compared, but the proportion of the road maps used for this experiments.

The Figures 16 - 23 show the results of the runtime and memory usage
for the random generated 50 s-t paths, for all four road maps New York
City, San Francisco Bay Area, Colorado and Florida. Setting the focus on
the proportions between the four road maps by runtime, the experiment
from [7] and the experiment in this thesis have nearly the same result.
There will not be a conclusion about memory usage because it differs
by the path on the graph. Some s-t paths are short in their distance
from the source vertex to the target vertex, but the graph needs to be
more explored by the A* algorithm [11] than some longer s-t paths with
a higher distance. Thus, the memory usage is not significant for this
comparison.

One crucial point known from these experiments is the creation of the
path graph structure. The summary reports show, the more of the graph

35

5. Conclusion

is explored the longer the path graph structure needs to be built. Most
of the needed runtime is spend on this step.

5. Conclusion

5.1. Conclusion

Until now, the K* algorithm was only usable as a part of the model
checker tool DiPro [5, 9] in combination with a few graph types. It was
the aim to get an isolated K* algorithm as stand-alone version to use it
irrespective of the given graph type. In this thesis, it was shown how the
K* algorithm has been isolated from the model checker tool DiPro [5, 9].
It was shown how the implementation works and which parts had to be
adapted for a general use. In order to make this general use possible two
abstract interfaces were implemented.

This new version of the K* algorithm is usable by the command-line in-
terface. It is irrelevant which operating system is wanted to be used.

The test cases yield the conclusion, that there are no significant differ-
ences to the original K* algorithm in terms of runtime or memory usage.
Furthermore, they show that this K* algorithm is the most efficient im-
plementation at this time.

5.2. Future Work

The strength of the new K* algorithm lies in the independence as shown
in this thesis. Hence, it would be a possible option to re-include this
version of the K* algorithm back to the model checker tool DiPro [5,
9]. Furthermore, it could be included in other tools as well. Next, the
context interface could be reduced in the number of needed Java classes.
Therefore, the structure has to be changed. Lastly, a graphical user
interface would be an addition, which replaces the use of the command-
line interface. Moreover, the graphical user interface could provide a
visualization of the solution paths as a completion to the solution output
files.

36

References

References

1]

2]

Aljazzar, H.: Directed Diagnostics of System Dependability Mod-
els. Doctoral Dissertation, 2009, chap. 2 + 5 + 7.

Aljazzar, H., Leue, S.: K*: A Heuristic Search Algorithm for Find-
ing the k Shortest Paths. Artificial Intelligence, Volume 175, Num-
ber 18, December 2011.

Eppstein, D.: Finding the k Shortest Paths, SIAM J. Computing,
1998.

Herold, H., Lurz, B., Wohlrab, J.: Grundlagen der Informatik,
Pearson, 2012, 2nd version.

Aljazzar, H., Leitner-Fischer, F., Leue, S., Simeonov, D.: DiPro -
A Tool for Probabilistic Counterexample Generation. In Proceed-
ings of 18th International SPIN Workshop on Model Checking of
Software (SPIN 2011), 2011.

Kemper, A., Eickler, A.: Datenbanksysteme, Eine Einfiihrung,
Oldenbourg Verlag, 2011, pages 144-151, 8th version.

Liu, G., Qiu, Z., Qu, H., Ji, L., Takacs, A.: Computing k shortest
paths from a source node to each other node, Springer Verlag, 2014,
pages 2391-2402.

Pearl, J.: Heuristics - Intelligent Search Strategies for Computer
Problem Solving, Addison-Wesley, 1986, page 3, 46-49, 75, 99-110.

DiPro, https://se.uni-konstanz.de/researchl /tools/dipro/,
30.12.2016.

Dijkstra, E. W.: A Note on Two Problems in Connexion with
Graphs. In Numerische Mathematik, 1959, pages 269-271.

Hart, P. E., Nilsson, N. J., Raphael, B.: A Formal Basis for the
Heuristic Determination of Minimum Cost Paths, 1968, pages 100-
107.

JDBC - Java Database Connectivity
http://www.oracle.com/technetwork /java/javase/jdbc/index.html,
12.12.2016.

37

References

[13] Oracle Java Documentation,
https://docs.oracle.com/javase/8/docs/, 19.12.2016.

[14] javac - Java programming language compiler
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/
javac.html, 12.12.2016.

[15]) GNU Puplic Licence https://www.gnu.org/licenses/gpl.html,
15.12.2016.

[16] Demetrescu, C., Goldberg, A., Johnson, D.;: 9th DI-
MACS Implementation Challenge - Shortest Paths 2006
http://www.dis.uniromal.it/challenge9/, 27.11.2016.

38

A. Appendix

A. Appendix

A.1. Compilation manual

The K* algorithm comes without any graphical user interface. It is pre-
pared to be used via command-line interface and is implemented for a
use on a Windows system or a Linux system. Hence, an own compilation
Java class is created. For compiling the K* algorithm, only the Compile
class and the source folder are needed. The wanted heuristic Java file
should be put into the source folder h and the whole graph files into the
folder context. To compile and execute the K* algorithm the following
steps should be done:

1. Open the command prompt (or Linux shell) and move to the di-
rectory where the source folder and Compile file is stored. It is
important that the source folder and Compile Java file are in the
same directory. The source folder contains all Java files for the K*
algorithm. Put the heuristic file into the folder ”src/h” and the
complete graph context files into ”src/context”.

2. Compile all files by using the command
7java Compile”

The binary folders will be created.

3. To run the K* algorithm use the command
”java run.Main [[prop file]]”

where the prop file can be every readable text file e.g. prop.txt.
The properties file should include all needed commands for the ex-
ecution. For help take a look to the section properties below.

4. The K* algorithm is running and the result will be printed on the
command prompt.

The path for the Javac compiler has to be set. Without the Javac com-
piler the class Compile can’t be used. If the user desires to run the K*
algorithm with a graph stored in a database, a Java database connector
is needed. This connector has to be set to the classpath, too. If not, the

39

A. Appendix

following commands should be tried to compile the K* algorithm:
”java Compile [[libs]]”

where libs should be the Java database connector. And run the algo-
rithm with:

?java -cp .;[[path of lib]] run.Main”

where the complete path of the library file should be given. Notice,
that the semi-colon is used on Windows systems. Use a colon on Linux
systems.

It is not necessary to compile everything again, if the folder has been
compiled once. To get the compilation working all needed folders in the
source folder have to be filled with Java classes.

A.2. Properties manual

To run the K* algorithm with specific properties a property file with the
following options can be used:

-greedy the algorithm runs in greedy mode which means that the
value f is only calculated by the heuristic value h. The needed cost
of the way won’t be considered.

-complete the algorithm runs in complete mode which means that
the whole graph will be explored.

-prune n the algorithm prunes nodes which f-value is not better
than the set value n.

-maxiter n the algorithm stops after n iterations and ends without
any solution if no solution path is found in time.

-maxtime n the algorithm stops after n minutes and ends without
any solution if no solution path is found in time.

-k n n solution paths should be found.
-h n the given heuristic Java class n will be used for search.

-c n the given context Java class n will be used for graph.

40

A. Appendix
-solTrace n the found solution paths should be logged in a solution
output file. n can be set as txt for text file or xml for xml file.

-log n the logging level can be set from 0 to 5. 0 = disabled; 1 =
basic; 2 = normal; 3 = detailed; 4 = verbose; 5 = debug.

In case of the given context file for the graph the user needs to put in
specific properties like start vertex and target vertex.

A.3. DVD

41

	Introduction
	Contributions
	Orientation

	Preliminaries
	Heuristics
	The K Algorithm
	Types of Graphs

	Isolation of K Algorithm
	Isolated K algorithm
	Initialization
	Modification and Changes
	Dynamic loading of Context and Heuristic
	Properties of Execution
	Modification of the Context Class
	Solution Output

	Heuristic Interface
	Context Interface
	Database
	Compilation and Execution

	Case Studies
	K with a Distance Graph
	Comparison with another K Implementation
	Results Discussion

	Conclusion
	Conclusion
	Future Work

	Appendix
	Compilation manual
	Properties manual
	DVD

